Browsing: BigData

    在數碼轉型旅程中,不少企業會優先選擇將數據上雲,享受雲端儲存服務帶來的彈性及成本下降。不過,有調查顯示三分一採用雲儲存服務的企業表示,雲端儲存成本較預期高四成有多,而且更有進一步上漲趨勢!要有效地控制數據儲存的成本,就要借助人工智能 (A.I.) 將數據去蕪存菁。 根據業內人士估計,單在 2020 年全球產生的數據量便達一萬億 GB。而在現時全球企業追求大數據分析、人工智能運算的潮流下,可以預見數據量只會持續爆炸性上升,如何管理及儲存數據,便成為企業必須克服的重要任務。而在數碼轉型過程中,雲端儲存是較容易開展的一步,特別是不少服務供應商均向企業管理者展示各種轉型好處,例如儲存量可隨需要即時彈性擴充、節省人手管理及硬件採購成本等,令管理者在未能完全掌握公司的數據運用狀況下已優先採用服務,難怪有三分一企業在雲端儲存預算上會超支四成。 為了協助企業解決相關問題,市場上便出現了採用 A.I. 技術優化數據儲存的服務供應商,當中包括 Densify 及 Cast AI 等。這些供應商聲稱其人工智能演算法可替不同行業的客戶,自動計算出最適當的儲存計劃,例如應選擇哪一間雲端儲存服務供應商、採用哪一種先進的檔案壓縮技術、分類數據的重要性及成本效益。Densify 便曾在訪問中提及,人工智能可在首兩至四個星期內為客戶節省五成儲存成本,而且計劃還會持續優化,最終可在未來的兩至四個月內讓成本再減一半。 A.I. 管理數據服務亦照顧到在地及混合雲架構,例如 Accenture 提供的數據優化分析服務,便借助人工智能去了解企業的數據內容,自動為數據進行分類,搜尋出重複或接近重複的數據,協助企業客戶在適當時機將數據轉移或歸檔,令數據管理更有效率及省錢。除此之外,人工智能演算法還可更有效壓縮圖像及影片質素,令影像能在近乎保持原貌下儲存。在大數據時代,數據管理及儲存將會是企業另一個重大戰場。…

    「跌倒」是導致長者受傷和死亡的重要原因之一,本港 65 歲及以上的社區長者,每年約五人便有一人跌倒,當中更有四分之三長者因此骨折及傷及頭部。傳統的跌倒預防測試,是使用問卷調查及肉眼觀察,前者易因患者的主觀回答導致誤判,後者的精準度存疑。本地初創公司步固(Booguu)因此研發了一套智能防跌系統 Aspire,結合人工智能(AI)及大數據科技,提供準確可靠的評估方法和指數,辨別長者及中老年人的跌倒風險。 AI收集百分之一秒身體數據 雲端運算分析步姿 Aspire 使用一個輕便的裝置,讓受試者在約 5 分鐘內,完成三組測試動作,包括行走、睜眼及閉眼分別站立 30 秒,及於 15 秒內反覆坐下起立 5 次,AI 在綜合各種因素後,再使用雲端(cloud)計算,最後得出智能評估報告。 步固行政總裁 Gary Jin 表示,很多老人沒有明顯的跌倒症狀,甚至在行山時健步如飛,自己也不察覺有跌倒風險,但…

    成日聽到評論話某個人好有創造力,其實要衡量創造力好主觀,點先可以標準化地進行評估?有研究員就開發了一個四分鐘測試,利用人工智能的深度學習 (Deep Learning) 能力,計算參加者在兩項遊戲中的表現,而衡量標準就是基於人類的擴散性思考 (Divergent thinking) 方法。 擴散性思考能力,是一種以問題為中心,透過多方向思考討論各種處理問題的方法,從中得到創意概念。因此,擴散性思考屬於非線性思維,而且透過多方向思考,有可能在討論過程中發現不同解決方案的關聯性,比起傳統的線性聯想模式更有機會想出新點子。思考過程可以幻想為衛星城市發展模式,都市化由中心出發擴散至週邊地區,而衛星都市之間又有可能存在連繫。 由於在擴散性思考中,問題與答案未必一定存在相關性,就如人類大腦的大型神經網絡運作情況一樣,無時無刻都存在各種概念,所以研究人員在開發這個創意評估遊戲時,便利用了相關的數據樣本去評估參加者的創意。研究員首先將數據樣本訓練人工智能,經深度學習後調查出更準確的演算法。研究人員特別指出,交由人工智能分析的原因有兩方點,第一是數據量非常龐大,單靠人力將花費很多時間,其次人類對事物存在偏見,而且思維亦受過往經歷所局限,難以客觀地整理出結果。 而由 McGill University、Harvard University 及 University of Melbourne 科學家創建的 Divergent Association…

    數據分析在企業數碼轉型旅程的重要性,已經不用多解釋,不過採集及管理數據,卻同時為企業帶來極大挑戰。早前由 ICT 服務供應商中信國際電訊 CPC(以下簡稱 CPC)及網絡安全服務供應商 Fortinet 合辦的午餐會,便跟與會人士分享了各自的心得,讓企業管理者能夠有效及安全利用數據創造真正的商業價值之餘,同時又能合規地管理數據,享受數碼轉型帶來的營運效益。 數據應用潛力無限 擬定法例防數據外洩 在企業數碼轉型的旅程中,不同種類的數據都可提升各行各業的市場洞察力。經濟學人首席貿易分析師 Nick Marro 舉例汽車業可利用數據分析為汽車加入自動導航、多媒體娛樂甚至無人駕駛功能,金融業可持續提供新的流動理財、程式盤買賣等服務。大數據分析讓企業能夠預視市場走向,靈活地修正營運方針,享受增加生產力、減少成本等成果,最終達到改善客戶體驗的終極轉型目標。 隨著全球不同國家開始立法管制數據採集, Nick 認為儲存數據及數據跨境問題將會變得非常重要,導致 ICT 服務供應商或客戶不能只採用單一數據管理政策,打後必須「因地制宜」。 不過,Nick 指出收集及管理數據的難度正在與日俱增,其中一個原因是不少國家正全力就數據管理訂立法例。他以中國為例,2017 å¹´…

    在開發新產品前,傳統方法是收集問卷調查,或搞 focus group 了解目標客戶的真正需要。不過,現時已有不少公司引入人工智能,好似飲品生產商 PepsiCo,無論開發飲品抑或小食,都已套用 AI 工具協助分析。再發展落去,大家可能無機會再靠填問卷或出席意見調查會賺錢…… 雖然 PepsiCo 本身也有收集大數據 (Big Data),但由於這些數據大部分來自自己的客戶,因此未必能完全代表整體市場的喜好變化,因此 PepsiCo 也有採用一些現成服務,例如由 Google 前員工開發的 Tastewise,一款以演算法去分析及預測口味轉變及原因的工具。據稱 Tastewise 內收藏及監察的數據量非常豐富,當中包括 9,500…

    今時今日,任何事情都可以跟人工智能(AI)或大數據扯上關係,咖啡也不例外。有本地咖啡店近日利用大數據,分析生態環境、社會經濟、生活質素三方面資訊,嘗試找出未來 40 年社會環境走勢,並推出 12 款呼應不同時代的「Future Drinks」,包括咖啡、雞尾酒及無酒精飲品。 這間名為 Preface Coffee 的咖啡店,本身屬於編程學校 Preface Coding 旗下,一直標榜科技與咖啡結合。Preface Coffee 創辦人盧炳棠表示,今次的「Future Drinks」計劃,主要是分析全球 260 個國家,由 1960 年至…

    在新冠疫情下,可能你都試過通過網上會議見工,但你又有否想過,畫面上雖然只得一個人事部職員同你會面,但背後原來還有一個隱形面試官?無錯,全球各大企業已陸續引入人工智能 (AI) 技術去篩選求職者,不幸求職失敗,分分鐘只是栽在機械人手上。 人工智能招聘 (AI recruitment) 技術,最大的好處是可以減少人事部的工作量,通過精準的大數據 (Big Data) 分析資料庫,從數以千計的求職申請中找出合適的人選,減少因人手不足而走漏人才的風險。專家指出,由於人力資源始終有限,人事部員工往往未能詳細閱讀所有求職者的個人履歷,而且又無法安排所有達標人士接受面試,而可以 7/24 工作的人工智能機械人,便不會受到這方面的影響,而且態度亦較為持平,減少先入為主的偏見,適合用於初選階段。 到底人工智能在篩選時,會用哪些方法去測試求職者的能力?一般來說,現時人工智能招聘會以兩種方法進行評估。 遊戲測試 以美國公司 Pymetrics 為例,其測試手法是讓求職者接受一個為時約 25 分鐘的遊戲,例如計數、配對詞語、限時內完成指定任務等,目的在於測試求職者的個性及危機處理能力。據知目前大企業如 McDonald’s、JP…

    今時今日,人工智能 (A.I.) 的應用已經遍布各行各業,因為只要結合優質的大數據 (Big Data)作分析,便可提供各種洞察力報告,讓企業更能掌握市場即時狀況,為現有顧客打造更適合的服務,甚至發掘出潛在客戶,提升營業額。而在內容行銷 (Content Marketing) 方面,人工智能更可提供行銷計劃一條龍服務,不過大前提是所採用的大數據必須乾淨及優質。 自動產生熱門內容 外國不少媒體其實已引入人工智能技術撰寫文章,以炮製出更能吸引讀者的內容。因為以往要寫出一篇具話題性的文章,非常倚賴編輯或記者的經驗及對市場的觸覺,例如通過大量資料搜集去掌握熱門話題,或將熱搜關鍵字融入內容,以增加文章的曝光率。而在人工智能的參與下,它懂得自動從網絡上的社交平台、討論區、搜尋字眼等因素去理解現時哪類題材最多人關注,然後自動產生高質素的內容,滿足讀者的需要,同時可保持統一的風格,大大減省專業人士參與的需要,無論在成本及效率上都得以提升。以國內百度的AI智能創作平台為例,它便可協助用戶創作不同類型的文章,由詩歌、小說以至新聞都能一一勝任。 內容策劃更有效率 內容行銷最講求時間性及準確度,對於應該在什麼時間、以哪種方式向特定客戶群推送有價值的內容,才能達到最佳成效,這些工作都必須交由市場推廣專業人士去分析,過程耗時又複雜。通過人工智能收集不同客戶群的資料,便能清晰掌握各類客戶群的需要,自動提交完整行銷計劃報告,包括推廣目標、內容創作、發佈渠道及成效預估,減輕行銷人員的工作負擔,專注人工智能或機械人無法處理的工作,例如建立客戶關係等。 污染數據 雖然人工智能看似完美,不過在安全性上仍有隱憂,就以上述個案為例,人工智能要演算出準確有效的結果,都必須有乾淨及優質的大數據輔助。一旦提供給機械學習 (Machine Learning) 的數據庫受到惡意污染,分析結果便會有所偏差甚至完全相反,令內容行銷無法達到預期效果。因此現時網上雖然有不少大數據共享資料庫,企業在運用前亦要特別小心,情況一如開源應用軟件 (open source application)…

    分享FacebookTwitterWhatsApp 醫療事故不時涉及人為失誤,特別在香港的公營醫療體制下,前線經常人手不足,而為應付每天上門的大量病人,醫生亦無足夠時間詳細為病人問症,令病人接受不到適合治療的機會大增。結合人工智能 (AI) 及大數據分析,就可大大紓緩醫療機構的人手壓力,並提升各種病症的確診機會。 現時各種病症診斷,主要仍依賴醫生的經驗,雖然各種影像檢查技術如磁力共振 (MRI)、電腦掃描 (CT-SCAN)、正電子電腦掃描 (PET-SCAN) 均發展迅速,有助發現微細的徵狀,但最終醫生還須配合病人的病歷、家族遺傳等風險因素作評估,以決定整個治療方案。以癌症為例,影像檢查雖可及早發現微細的細胞異變,但部分器官位置如鼻咽、乳腺等腫瘤發展可以非常快速,再加上部分影像檢查始終有一定的輻射量,不能經常安排病人進行檢查,導致病人有可能延醫。 人工智能及大數據分析,便有助醫生及早找出高風險病人以便密切監察。研究員可以將病人資料庫的數據匯入系統,分析出不同的風險指數,包括年齡、性別、家族遺傳、運動量、生活習慣等,同樣以治療癌症為例,即使新求診的病人未有在影像檢查出發現異常,但如其病歷被人工智能系統判斷為高風險,便可安排病人進行後續檢查,盡早發現異變;如病人屬低風險則可安排較長的覆診期,紓緩醫療機構的工作壓力。IBM 的人工智能系統 Watson Genomics,便在乳癌、心臟病等病症評估上有很大的貢獻。 除此之外,穿戴科技如智能手表的普及,亦有助一般人及早找出潛在病症。通過收集及分析大量使用者的健康數據,同樣可讓人工智能系統識別各種健康指標,家庭醫生只要運用適當的工具,便可更準確發現求診者的異常之處,例如求診者的身體機能有否比同年齡層人士差,令醫生可以在「望聞問切」的傳統斷症方法上,得到更有力的數據支持。 資料來源:http://bit.ly/398yPgc

    比 Spotify 更具彈性,真係好方便! 黑客盜取個人資訊後,要甩手套現,以往所需時間以星期為單位。Trend Micro 最近發現黑客將盜取資料雲端化成 Cloud of Log,加快交易流程之餘,更提供先進分析與篩選工具,方便網絡罪犯揀選訊息日後犯案,令人防不勝防。 雲端化為罪犯換來速度。以往黑客盜取資料、轉賣並犯案的過程,以星期為單位。雲端化後大大縮減至以天、甚至小時為單位,研究團隊以 Garage Sale 與 Online Shopping 比喻雲端化的高效率。「黑客的交易時間等於企業的應變時間,以往企業有平均十天去發現資料被竊取、評估損失、擬定對策、通知受影響客戶與執法機構等,黑客將贓物雲端化令防守難度劇增。」 數據化年代,Ransomware、Botnets、Keylogger 等竊取個人資料的攻擊變成主流,黑客每次盜取的訊息量劇增,掌握的個人資訊亦以 TB 計,偷竊資訊內容涵蓋…