Search Results: IT (2086)

    Splunk 令人著迷之處是其前瞻力,因此,每年的 Splunk Forum 不只是一次 Splunk 的動向或產品報告,更是一次業界未來報告。Splunk 近年收購了不同技術如 VictorOps(DevOps)、Phantom(Security Orchestration)等,加上 Machine Learning、Cloud 等技術,令 Splunk 於各範疇上進一步強化,今年的 Splunk Forum 就展示了這些技術如何完美地融合。 由 Detective…

    現今世界秒秒鐘幾百上落,海量嘅操作、交易、分析數據能否達到實時可見(real-time visible)成為是關鍵,慢一秒都不能,運算速度主宰企業生死存亡。繼續以傳統方法進行運算簡直等同自殺,因此,In-memory Computing 成為最熱門的技術。In-memory Computing 的奧義何在?我們找來 In-memory Computing 領域的表表者 GridGain 的專家問個究竟。 Scale up 不是最好方法,現在要 scale out 「以前做 IT 有術語叫 Blackout(停機),當然絕對不能發生的。但今時今日,連…

    大量安全監控只得到一大堆 alerts 傳統 IT Security 防護的處理方法,主要偏重在事前的預防。從近年發生的各式安全事故來看,企業也逐漸意識到,光是事前的預防,已經不足以阻擋各式各樣的網絡安全威脅。即使企業投放大量資源去設立不同形式的安全監控, 往往只得到一大堆 security alerts, 不但數量繁多,alert 的內容也不易理解和處理。 若不幸碰到事故,要找出根源(包括:還原攻擊事件的原貌,以及對事故的調查與分析),往往需要高度專業人才來處理。在整個行業都缺乏IT Security人才的情況之下,實在令企業頭痛。 新型服務 — MDR 因此,近年冒起了新型的安全防禦服務,稱為 MDR (Managed Detection…

    「練習網絡保安技術有如學飛行,要用模擬器練習,因為不可能用真飛機。」Rick Tam 以學揸飛機比喻網絡保安訓練,因為唔會有老闆會畀間公司「教飛」。但問題係:如何練出實戰能力?「因此要有模擬訓練系統 Cyber Range。」 Cyberbit Range 登陸香港 「Cyber Range 是一種實戰訓練方法:提供一個模擬網絡環境,並給予真實攻擊,學員以環境中的工具學習應對的技術。」網絡保安,場場對弈,應變、實戰當然比紙上談兵重要。但成立一個 Cyber Range 訓練中心絕非易事,所以即將於九龍塘開幕嘅 Cyber Range Training Centre,絕對係業界喜訊。「其背後的支援系統,就是以色列的 Cyberbit Range。」…

    近年碰到 IT 行家,總是為招聘人手而煩惱,得到的答案一定是「好難請到合適的人」。如果再問一個求職者,工作容易找嗎?回答也會是「好嘅工作太難找了」。 其實一份工作好不好,有一個「好老闆」至少要佔到一大半的影響。當然有些人總是把焦點放在薪金、員工福利等東西上,而忽略了有個「好老闆」的重要性。薪金雖然重要(其實一般也不會相差太多),如果你只睇短期利益,咁就難免會失去一些長期看來更有價值的東西。 馬雲也說過:「30歲之前,追隨一個好老闆,比進入一個好公司更重要。」因為跟著一個「好老闆」,就等於為你的長期收益揾到一個合適的「槓桿」,再押上你的才幹和時間,用「槓桿」大幅度提高你的贏出率。 這個世界很公平,你揀老闆時,老闆也揀你。「好老闆」也會罵人,給你鍛煉的機會,有時候讓你在痛苦中成長,並令你的潛能得以發揮。 員工不會因為公司差而離開,大部份離職原因都是頂唔順老闆。很多時候,員工與公司存在的問題與分歧,都是跟他們的老闆有關,而令到雙方缺乏信任和尊重。 所以,員工是極渴望得到「好老闆」,甚至比加薪更吸引。試問你每天都花很長時間與老闆一起工作,如果工作得不開心,肯定比死更難受。相反,一個好老闆是保持員工快樂和敬業的最佳激勵之一。 一個真正的好「好老闆」雖然很難找到,但也很難分開(你會渴望追隨),更不可能忘記的。

    一般稱為 3D 的工作,所指是:乏味(Dull)、骯髒(Dirty)、及危險(Dangerous) 的任務 ,我們會盡量使用機械人、無人機等來執行。原因是很難揾人去做這些工作,所以才顯出機器在這領域的優越執行能力。 機器的創作力也越來越逼近人 在digital transformation的大環境下,世界正在不斷地自動化及虛擬化,需要人力處理的機會就越來越少了,這亦是大勢所趨。況且機器可掌握大量數據及過往記錄,與人手執行相比,可能出錯率還低呢。 還好,我們在「敏捷性」與「靈巧度」都比機械人高得多,可以說在短期內,機器仍取代不了我們在這方面的優勢。此外,「創作力」亦是我們認為比機器優勝的地方,但請不要太自恃,機器創作的能力也越來越逼近(你試問一問那些作曲家,他們大多數也用電腦來先行創作,然後再由人手修改)。其他專業領域也有差不多的變化,建築師也用電腦來創作建築物。說不定,很快就連律師、醫生也會倚賴機器幫他們處理日常個案及診症。 將來的工廠只請兩名工人:狗及負責餵狗的 我聽過有一個幾誇張的比喻,講到將來的自動化工廠只需請兩名工人,一個名額畀「惡犬」霸咗 ,因為惡犬要負責看管住那些機器(擔心有人破壞),另一個名額就請「人類」來做,職責只是負責餵那頭惡犬而已。 結合社交技巧與量化技巧,就會獲得最高報酬 往後人類和機器的分工將會有改變,這一點,我們一定要理解和接受。但機器是不擅長滿足人類的心理需求,因此,那些需要運用到同理心、領導力、團隊合作等的工作,都不是機器能取代的。隨著科技進步,高層次的「社交技巧」,可能變得比高級的「量化技巧」更有價值。學懂如何結合「社交技巧」與「量化技巧」,才會獲得最高報酬。

    不好意思,近日 Neo 有喜,潛了水。致歉! 如果眼睛稱為靈魂之窗,臉就是…玻璃幕牆?你的臉本身是一堆物質,但同時反映你的心靈活動。此外,你的臉亦是你的社會存在(Social Identity),所謂認人,其實是認臉,返工亦要睇老闆面色做人。可見,一張臉,是物理世界、心靈世界及人倫世界的交滙點。 我們的臉,可被掃描於政府數據庫之中:不難,現今技術已做到,外遊過關時一定試過。這帶來更好的保安,及加快過關速率。當然會有誤認,但基本上已越來越準。商用也有,刷臉支付、刷臉提款、刷臉進站都有了,所以也出現了「刷臉概念股」:臉與股真的貼在一起了。 但在「一臉通行」的時代,誰真正擁有我的臉呢?明星所關心的肖像權,現在也應該是大家的關心。按理,肖像被他人使用,應該得到肖像權擁有人的同意。坦白講,我日日周街去,咁多攝錄機,我點知我的尊容有沒有被人盜用?Neo曾試過上網搜臉(當然唔用我自己果塊),找到一堆網上照片,有男有女,都幾好笑。與打指摸不同,刷臉可以發生於不知不覺間,當然私隱是一大問題。另外,在我的肖像視頻上,現已可用 AI 改編,製造 Fake Speech,恐怖到笑。我又諗起,如果我塊臉有肖像權,咁我可唔可以放售權利?如果可以,咁我塊面不再屬於我,我早上唔剃鬚,影響肖像,係咪會畀人拉? (Neo按:基本上,我們現代人已經不能 Opt out 刷臉這個「權利」了,除非你用了 Burqa。果然是先知!)

    最近睇過一篇文章,內容是講述「人腦」和「機器」應該如何分工做判斷。先講 20 年前,分工大致是:機器負責基本計算、存儲記錄、資料傳輸;人類就負責做分析和決策。現今電腦運算能力提升,究竟「分析」和「決策」,由機器還是人腦處理比較出色呢?這並不是簡單一個 Yes 或 No 的答案,而應是「人腦」和「機器」兩者如何分工和重新定位的問題。 人類判斷有兩套系統 首先,人類是如何作出判斷,簡單來說:有兩套系統。 「系統一」是憑直覺及過往經驗,也是人腦的強項。「系統二」是靠資料來演算,就是機器的優勢所在。大量證據顯示,若有得選擇的話,單靠「系統二」得到的決策和預測(即是全由機器來決定),通常比「系統一」的判斷更優勝。 機器判斷更優勝 點解?因為即使資料不足或 algorithm 尚欠成熟,要作出修改實在不難,也可隨時再演算一次。但要推翻最高領導的主觀決定,就複雜得多了。所以,奉勸各位領導,如果是機器可以處理的判斷,就應由機器去處理。天氣預測就是一個好例子,每日每分每秒大量的不同的氣象數據,由電腦機器預測出來的天氣,肯定比氣象學家來得準確。 不要依賴最高領導人 在這似乎講到人腦決策價值不大,當然不是啦。在某些情況中,仍然應該運用人類主觀判斷,只是比重倒轉(把你的主觀判斷,量化成機器決定的參數),或去處理一些更深層問題。隨著科技發展與普及,我們要擺脫對機器作為主導分析的抗拒,更不要依賴最高領導人的決定,因為機器的判斷不會比他們差呢。

    相信Windows老手多少都聽講過 CCleaner,呢款 Piriform 旗下嘅老牌系統清理軟件,免費又冇廣告,深受大家歡迎,全球有1.3億使用者!但自從 Piriform 被 Avast 收購後,CCleaner 新聞多多:去年9月被 hack 足一個月,227萬用戶受到影響;近期又被 BetaNews 編輯 Wayne Williams 撰文強烈攻擊,指 CCleaner 開始推送廣告,又綑綁 Avast 其它產本;最新版本仲被指出後台自動運行,收集用戶資料而唔畀用戶…

    近年很流行從小就學習 Coding (程式編寫),希望透過輕鬆的方式,培養小朋友的邏輯思維,提升解決問題的能力。其實許多國家及城市,已經把程式編寫劃入正式的學習科目。程式編寫越來越受到重視,會不會有一日跟中、英、數等科目平起平坐,成為必修科目呢? 由 How 到 What 小朋友要學的是 Learn How to Code,用什麼編碼工具並不重要(反正 Programming Language 千變萬化,往後都未必用著的)。通過思考訓練,養成良好的邏輯思維及解難技巧後,便可選擇 What Code to Learn。因為大部份的 Programming…