Browsing: AI

    網絡安全行業現時非常看重「零信任」(Zero Trust)防禦概念,即對所有網絡連線及活動保持懷疑態度,不再單純依賴已知的病毒資料去預防入侵。與此同時,被視為網絡安全明日之星的 AI(人工智能)技術,卻建基於「可信任」的數據包作為訓練材料,兩者應該如何共存? 將 AI 技術引入網絡安全用途,帶來的好處極多,例如可以快速處理各種安全警報,阻止惡意軟件入侵,減少人力需求。另外,經訓練的 AI 模型還會不斷提升防禦能力。不過,由於 AI 技術非常複雜,持續發展過程到底是否仍能符合網絡安全法規?如缺乏適當的監管,相信業界仍難言可以 AI 完全取代網絡安全專家。 發展 AI 技術的主要障礙之一是數據,更具體地說,是確保數據的質量和完整性,畢竟 AI 模型的好壞完全取決於數據包的質量。基於 AI 的網絡安全系統,在匯入數據方面正面臨種種挑戰: 數據污染:不法人士可以通過操縱…

    新冠病毒加快企業數碼轉型,緊急採用遙距工作工具,結果亦同時令網絡安全事件增加。因為人類無法處理激增的數據點及數據,而擅長識別、過濾和確定威脅警告的優先次序的人工智能 (AI),便被視為網絡安全界的明日之星。 由於大量員工在家工作,以往要處理的數據因而激增,傳統的 SIEM 工具便難以協助安全人員疏理問題。專家解釋,SIEM 只能過濾從 SOC 安全中心發出的數百萬警報,當中必須靠人力找到各種關連,否則只能獨立處理每個警報。人工智能則可以對警報進行分析,找出當中的細微關聯,快速分辦是否誤報,並自動結合威脅報告將警報按風險指數優先排序,安全人員便可將注意力集中在最緊急的問題上,而不用擔心被其他次要問題擾亂。 人工智能不單可分析即時遇到的問題,還可用於整體威脅情報預測,預視組織接下來可能面臨的攻擊時間、地點和類型,例如當系統發現近來針對醫療設施的攻擊加劇,而企業的業務領域又與之相關,便會發出警告,讓安全人員了解瞬息萬變的安全風險趨勢。雖然人工智能看似萬能,但網絡安全專家警告不能完全依賴它的能力,因為它只是整個安全武器庫的其中一部分。 現時最火熱的研究,並非如何利用人工智能完全取代人手監控,而是找出一個正確的平衡點,作出最好的風險管理。專家指出,人工智能亦有可能犯錯,因此不應將所有任務都交由它決定,特別是如相關錯誤有可能導致業務中斷或難以估計的損失,便應交由人手作出決策。人工智能在安全監控過程中,對重要環節應只負責提供安全建議,並將收集得來的底層數據,經整理後交由人類分析。 對於大多數公司來說,人工智能在初期最能顯示其效益的地方,是融入網絡安全架構後的事件監控領域。一旦引入人工智能,便可大幅減少誤報或重複性工作的數量,就算有黑客入侵事件,也能較以往更快發現及作出報告,讓企業能夠更快修正安全風險問題。而要確實發揮人工智能的效力,相關政策、教育和管理的實施亦非常重要。首先,嚴謹的政策將有助於推動和塑造業務流程;其次是必須讓員工得到充分培訓,才能正確地及最大限度地使用人工智能工具。最後,企業亦必須監控和評估人工智能對安全解決方案和整體安全態勢的影響,持續地進行改善,才能令人工智能繼續成長,發揮出更大效能。 資料來源:https://bit.ly/3hj6DfO

    Google 為了設計出自家電腦處理器,出動應用於機械學習的 TPU 處理器。TPU 現時已為多個行業提供演算法服務,包括醫療、網絡安全等等,而 Google 搜尋器及翻譯工具背後的演算法亦是由 TPU 負責,專家估計,TPU 不單可加快設計出自己的下一代,而下一代亦可再設計出後繼處理器……最終咪會變成天網 (Skynet)! 傳統的處理器晶片設計,最大難度在於如何編排晶片上的數百萬個組件,因為處理器的運算速度,直接取決於各種組件的佈局,設計者不單要考慮組件擺放的距離,更要考慮運算過程中所產生的熱力。而且視乎處理器將會應用於哪一種產品,設計亦有很大分別,例如手機處理器會較講究節能,相反數據中心則強調速度優先,因此設計過程往往需要耗用數月以上,才能得出理想的最終電路圖。 而 Google 的研究團隊就利用自家的 TPU (Tensor Processing Unit) 機械學習處理器,將組件規劃的問題交由神經元網絡…

    今時今日,任何事情都可以跟人工智能(AI)或大數據扯上關係,咖啡也不例外。有本地咖啡店近日利用大數據,分析生態環境、社會經濟、生活質素三方面資訊,嘗試找出未來 40 年社會環境走勢,並推出 12 款呼應不同時代的「Future Drinks」,包括咖啡、雞尾酒及無酒精飲品。 這間名為 Preface Coffee 的咖啡店,本身屬於編程學校 Preface Coding 旗下,一直標榜科技與咖啡結合。Preface Coffee 創辦人盧炳棠表示,今次的「Future Drinks」計劃,主要是分析全球 260 個國家,由 1960 年至…

    人工智能(Artificial Intelligence,AI)和機器學習(Machine Learning,ML)的應用愈趨廣泛。以電子商貿起家的亞馬遜,旗下的雲端運算業務 Amazon Web Services(AWS)港台銷售總監翁宇強接受訪問時表示,AI 及機器學習科技革新了零售、金融等傳統行業,集團亦力拓相關業務,單是去年,集團已有超過 250 種 AI 及機器學習相關服務新推出市場。 翁宇強表示,集團提供的 AI 及機器學習服務,主要協助企業預測產品市場反應、精準營銷,以至整理非結構化數據(Unstructured Data)、偵測程式碼漏洞等。針對本身已有 AI 及數據專家的企業,集團亦提供不同機器學習工具,讓企業建立、訓練和部署機器學習模型,或者搜尋所需的演算法,藉以加快 AI 系統開發進度。 他續指,以電商起家的亞馬遜其實早於廿多年前已涉足 AI…

    與 Facebook 不同,Instagram 較受青少年用家歡迎,因此不少性罪犯都會利用該平台,私下接觸未成年用家。Facebook 為了保障這些用家,便交由人工智能技術去評估帳戶持有人的真實年齡,如發現是用家「扮後生」,便會阻止他們與青少年用家接觸。究竟如何執行? 人工智能 (Artificial Intelligence) 的用途非常廣泛,它可以應用於工業、醫療、交通網絡、教育等範疇。而今次 Facebook 套用於 Instagram 的 AI 技術,便是為了防止青少年受到性侵,可說是非常特別的用途。近年不少性罪犯轉移使用社交平台或即時通訊的私訊功能,扮演成不同角色接觸青少年,混熟後便露出獠牙,或約青少年外出性侵,或取得青少年的私密相片勒索。有研究報告顯示,過去兩年超過七成的青少年性侵事故都是藉由Facebook、Messenger、Instagram、WhatsApp 或 Snapchat 等通訊工具作為起點,當中約 25% 性罪犯更是使用…

    人工智能(AI)當中的智能,絕非無中生有,而是必須依賴人類為其提供養分,即將不同的datasets輸入系統,才能讓人工智能從中深度學習,完善它的演算法準確度。不過,港人最愛的「F牌社交平台」的人工智能系統已毋須依賴這些datasets,它只須使用同公司的大熱「I牌社交平台」上的用戶私人相片,便能提升辦識事物準確度。為了文明進步,大家繼續upload相吧! 人工智能的用途非常廣泛,以影像辨識為例,發展速度極快,應用方案亦不少,例如自動辨識影像內包含的事物如人類、各種動物、風景等,便可用於影像分類儲存方面,以及影像編修工作。Adobe亦曾不只一次於科技會議上展示其人工智能執相能力,以及將一些簡陋風景畫變成真實風景的技術。而現時令人極為頭痛的Deepfake影片,先後將美國總統、荷里活明星以至F牌社交平台主席樣貌移植至不相干的影片中,這些幾可亂真的影片亦多次於社交網絡上被瘋傳。 雖然上述的人工智能技術令人歎為觀止,不過背後必須經過長期訓練工作,以影像內容辨識為例,便首先要為人工智能提供多套資料準確的datasets,即已經人類確認及標籤了影像內的事物,才能供人工智能深度學習,掌握各種事物在不同角度、剪裁下的形象,最終才可提升其辨識準確度及執相能力。 F牌社交平台的人工智能系統卻免除了準備dataset的需要,因為該人工智能具備的自主學習功能,它利用了I牌社交平台上用家上載的數以十億計影像,作為深度學習的材料,據稱該AI識別事物的準確度已高達84.5%,換言之,它(他!?)的演算法已可從圖像中不同像素(pixel)的組合,去識別到底代表的是什麼東西,毋須再從已有的datasets中逐一學習,減少人力介入的需要。專家指該人工智能的自主學習能力,可大大影響AI的發展。 雖然F牌社交平台的AI在學術研究上有不少正評,但亦同時惹來私隱關注,因為不少I牌社交平台用家均未曾想像到自己上載的相片或影片會被F牌社交平台使用,當然F牌社交平台方面早已將相關條款寫進私隱政策上,只是用家登記帳戶時未有檢查清楚。所以話,免費服務絕非免費,背後一定有代價。

    在新冠疫情下,可能你都試過通過網上會議見工,但你又有否想過,畫面上雖然只得一個人事部職員同你會面,但背後原來還有一個隱形面試官?無錯,全球各大企業已陸續引入人工智能 (AI) 技術去篩選求職者,不幸求職失敗,分分鐘只是栽在機械人手上。 人工智能招聘 (AI recruitment) 技術,最大的好處是可以減少人事部的工作量,通過精準的大數據 (Big Data) 分析資料庫,從數以千計的求職申請中找出合適的人選,減少因人手不足而走漏人才的風險。專家指出,由於人力資源始終有限,人事部員工往往未能詳細閱讀所有求職者的個人履歷,而且又無法安排所有達標人士接受面試,而可以 7/24 工作的人工智能機械人,便不會受到這方面的影響,而且態度亦較為持平,減少先入為主的偏見,適合用於初選階段。 到底人工智能在篩選時,會用哪些方法去測試求職者的能力?一般來說,現時人工智能招聘會以兩種方法進行評估。 遊戲測試 以美國公司 Pymetrics 為例,其測試手法是讓求職者接受一個為時約 25 分鐘的遊戲,例如計數、配對詞語、限時內完成指定任務等,目的在於測試求職者的個性及危機處理能力。據知目前大企業如 McDonald’s、JP…

    今時今日,人工智能 (A.I.) 的應用已經遍布各行各業,因為只要結合優質的大數據 (Big Data)作分析,便可提供各種洞察力報告,讓企業更能掌握市場即時狀況,為現有顧客打造更適合的服務,甚至發掘出潛在客戶,提升營業額。而在內容行銷 (Content Marketing) 方面,人工智能更可提供行銷計劃一條龍服務,不過大前提是所採用的大數據必須乾淨及優質。 自動產生熱門內容 外國不少媒體其實已引入人工智能技術撰寫文章,以炮製出更能吸引讀者的內容。因為以往要寫出一篇具話題性的文章,非常倚賴編輯或記者的經驗及對市場的觸覺,例如通過大量資料搜集去掌握熱門話題,或將熱搜關鍵字融入內容,以增加文章的曝光率。而在人工智能的參與下,它懂得自動從網絡上的社交平台、討論區、搜尋字眼等因素去理解現時哪類題材最多人關注,然後自動產生高質素的內容,滿足讀者的需要,同時可保持統一的風格,大大減省專業人士參與的需要,無論在成本及效率上都得以提升。以國內百度的AI智能創作平台為例,它便可協助用戶創作不同類型的文章,由詩歌、小說以至新聞都能一一勝任。 內容策劃更有效率 內容行銷最講求時間性及準確度,對於應該在什麼時間、以哪種方式向特定客戶群推送有價值的內容,才能達到最佳成效,這些工作都必須交由市場推廣專業人士去分析,過程耗時又複雜。通過人工智能收集不同客戶群的資料,便能清晰掌握各類客戶群的需要,自動提交完整行銷計劃報告,包括推廣目標、內容創作、發佈渠道及成效預估,減輕行銷人員的工作負擔,專注人工智能或機械人無法處理的工作,例如建立客戶關係等。 污染數據 雖然人工智能看似完美,不過在安全性上仍有隱憂,就以上述個案為例,人工智能要演算出準確有效的結果,都必須有乾淨及優質的大數據輔助。一旦提供給機械學習 (Machine Learning) 的數據庫受到惡意污染,分析結果便會有所偏差甚至完全相反,令內容行銷無法達到預期效果。因此現時網上雖然有不少大數據共享資料庫,企業在運用前亦要特別小心,情況一如開源應用軟件 (open source application)…

    「有無Wi-Fi密碼?」 如果舊時代的世界末日是沒有電視看,那麼現代級的災難,肯定是無法上網。 家居、辦公室、商場,有線/無線網絡的應用無處不在,幾乎成為生活必需品之一。當我們對網絡的需求愈來愈高,例如用戶連接的穩定度,還有更高層次的用戶體驗等,作為供應鏈的上遊企業,注定要面對更多的維護成本問題。 Juniper Networks 作為 AI 驅動網絡的先驅,一直希望透過各種數據科學及機器學習技術來分析數據並提供可行的解決方案,其中Juniper Mist AI 正是當中的技術結晶。Juniper Networks 大中華區銷售工程師梁丰表示:「Juniper Mist AI 是第一個具有嵌入式人工智能引擎的網絡平台,能在大幅節省成本的前提下,解決當前,甚至下一個十年的網絡服務問題。」 節省高達 60% 維護成本 梁丰續稱,在自動化流程未出現之前,企業要偵錯解難,往往需要動用大量人力物力,當你有…